skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meyer, Mackenzie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Combined analysis of optical emission spectroscopy and infrared thermography revealing how liquid properties affect plasma ignition in a dielectric barrier discharge microfluidic system where methane-containing gas interacts with organic liquids. 
    more » « less
    Free, publicly-accessible full text available April 29, 2026
  2. Reforming of methane (CH4) is a process to produce syngas (CO/H2) and other value-added chemicals including oxygenates such as methanol (CH3OH). Atmospheric pressure plasmas have the potential to be more energy efficient than traditional reforming methods as value-added chemicals can be synthesized directly in the plasma without requiring an additional step. In this paper, we discuss the results from a computational investigation of the formation of oxygenates by CH4 oxidation in the presence of Ar, including CH3OH and CH2O, in a nanosecond pulsed dielectric barrier discharge. The plasma is formed in a microfluidic channel whose small dimensions are ideal for plasma formation at atmospheric pressure. The production and consumption mechanisms of dominant radicals and long-lived species are discussed in detail for the base case conditions of Ar/CH4/O2 = 50/25/25. CH3OH is produced primarily by CH3O reacting with CH3O and CH3O2 reacting with OH, while CH2O formation relies on reactions involving CH3O and CH3. The most abundant oxygenate formed is CO (produced by H abstraction from CHO). However, the greenhouse gas CO2 is also formed as a by-product. The effects of gas mixture are examined to maximize the CH3OH and CH2O densities while decreasing the CO2 density. Increasing the Ar percentage from 0% to 95% decreased the CH3OH and CH2O densities. At low Ar percentages, this is due to an increase in consumption of CH3OH and CH2O, while at high Ar percentages (>40% Ar), the production of CH3OH and CH2O is decreased. However, both CO and CO2 reached peak densities at 70%–90% Ar. Changing the CH4/O2 ratio while keeping 50% Ar in the discharge led to increased CH3OH and CH2O production, reaching peak densities at 35%–40% CH4. The CO and CO2 densities decreased beyond 20% CH4, indicating that a CH4 rich discharge is ideal for forming the desired oxygenates. 
    more » « less
    Free, publicly-accessible full text available January 7, 2026
  3. Abstract Plasmas interacting with liquid surfaces produce a complex interfacial layer where the local chemistry in the liquid is driven by fluxes from the gas phase of electrons, ions, photons, and neutral radicals. Typically, the liquid surface has at best mild curvature with the fluxes of impinging plasma species and applied electric field being nominally normal to the surface. With liquids such as water having a high dielectric constant, structuring of the liquid surface by producing a wavy surface enables local electric field enhancement due to polarization of the liquid, as well as producing regions of higher and lower advective gas flow across the surface. This structuring (or waviness) can naturally occur or can be achieved by mechanical agitation such as with acoustic transducers. Electric field enhancement at the peaks of the waves of the liquid produces local increases in sources of reactive species and incident plasma fluxes which may be advantageous for plasma driven solution electrochemistry (PDSE) applications. In this paper, results are discussed from a computational investigation of pulsed atmospheric pressure plasma jets onto structured water solutions containing AgNO3as may be used in PDSE for silver nanoparticle (NP) formation. The solution surface consists of standing wave patterns having wavelength and wave depth of hundreds of microns to 1 mm. The potential for structured liquid surfaces to facilitate spatially differentiated chemical selectivity and enhance NP synthesis in the context of PDSE is discussed. 
    more » « less
  4. PFAS degradation in a plasma is modeled by combining calculations of electron impact excitation cross sections and molecular decomposition pathways in a 0-dimensional plasma chemistry model. 
    more » « less
  5. The conversion of methane, CH4, into higher value chemicals using low temperature plasmas is challenged by both improving efficiency and selectivity. One path towards selectivity is capturing plasma produced methyl radicals, CH3, in a solvent for aqueous processing. Due to the rapid reactions of methyl radicals in the gas phase, the transport distance from production of the CH3 to its solvation should be short, which then motivates the use of microplasmas. The generation of CH3 in Ar/CH4/H2O plasmas produced in nanosecond pulsed dielectric barrier discharge microplasmas is discussed using results from a computational investigation. The microplasma is sustained in the channel of a microfluidic chip in which the solvent flows along one wall or in droplets. CH3 is primarily produced by electron-impact of and dissociative excitation transfer to CH4, as well as CH2 reacting with CH4. CH3 is rapidly consumed to form C2H6 which, in spite of being subject to these same dissociative processes, accumulates over time, as do other stable products including C3H8 and CH¬3OH. The gas mixture and electrical properties were varied to assess their effects on CH3 production. CH3 production is largest with 5% CH4 in the Ar/CH4/H2O mixture due to an optimal balance of electron-impact dissociation, which increases with CH4 percentage, and dissociative excitation transfer and CH2 reacting with CH4, which decrease with CH4 percentage. Design parameters of the microchannels were also investigated. Increasing the permittivity of the dielectrics in contact with the plasma increased the ionization wave intensity which increased CH3 production. Increased energy deposition per pulse generally increased CH3 production as does lengthening pulse length up to a certain point. The arrangement of the solvent flow in the microchannel can also affect the CH3 density and fluence to the solvent. The fluence of CH3 to the liquid solvent is increased if the liquid is immersed in the plasma as a droplet or is a layer on the wall where the ionization wave terminates. The solvation dynamics of CH3 with varying numbers of droplets was also examined. The maximum density of solvated methyl radicals CH3aq occurs with a large number of droplets in the plasma. However, the solvated CH3aq density can rapidly decrease due to desolvation, emphasizing the need to quickly react the solvated species in the solvent. 
    more » « less
  6. Miniaturized photoionization detectors (PIDs) are used in conjunction with gas chromatography systems to detect volatile compounds in gases by collecting the current from the photoionized gas analytes. PIDs should be inexpensive and compatible with a wide range of analyte species. One such PID is based on the formation of a He plasma in a dielectric barrier discharge (DBD), which generates vacuum UV (VUV) photons from excited states of He to photoionize gas analytes. There are several design parameters that can be leveraged to increase the ionizing photon flux to gas analytes to increase the sensitivity of the PID. To that end, the methods to maximize the photon flux from a pulsed He plasma in a DBD-PID were investigated using a two-dimensional plasma hydrodynamics model. The ionizing photon flux originated from the resonance states of helium, He(3P) and He(21P), and from the dimer excimer He2*. While the photon flux from the resonant states was modulated over the voltage pulse, the photon flux from He2* persisted long after the voltage pulse passed. Several geometrical optimizations were investigated, such as using an array of pointed electrodes. However, increasing the capacitance of the dielectric enclosing the plasma chamber had the largest effect on increasing the VUV photon fluence to gas analytes. 
    more » « less
  7. Abstract Ozone, O3, is a strong oxidizing agent often used for water purification. O3is typically produced in dielectric barrier discharges (DBDs) by electron-impact dissociation of O2, followed by three-body association reactions between O and O2. Previous studies on O3formation in low-temperature plasma DBDs have shown that O3concentrations can drop to nearly zero after continued operation, termed the ozone-zero phenomenon (OZP). Including small (<4%) admixtures of N2can suppress this phenomenon and increase the O3production relative to using pure O2in spite of power deposition being diverted from O2to N2and the production of nitrogen oxides, NxOy. The OZP is hypothesized to occur because O3is destroyed on the surfaces in contact with the plasma. Including N2in the gas mixture enables N atoms to occupy surface sites that would otherwise participate in O3destruction. The effect of N2in ozone-producing DBDs was computationally investigated using a global plasma chemistry model. A general surface reaction mechanism is proposed to explain the increase in O3production with N2admixtures. The mechanism includes O3formation and destruction on the surfaces, adsorption and recombination of O and N, desorption of O2and N2, and NOxreactions. Without these reactions on the surface, the density of O3monotonically decreases with increasing N2admixture due to power absorption by N2leading to the formation of nitrogen oxides. With N-based surface chemistry, the concentrations of O3are maximum with a few tenths of percent of N2depending on the O3destruction probability on the surface. The consequences of the surface chemistry on ozone production are less than the effect of gas temperature without surface processes. An increase in the O3density with N-based surface chemistry occurs when the surface destruction probability of O3or the surface roughness was decreased. 
    more » « less
  8. Abstract Plasmas in contact with liquids can degrade organic molecules in a solution, as reactive oxygen and nitrogen species produced in the plasma solvate into the liquid. Immersing small droplets (tens of microns in diameter) in the plasma can more rapidly activate the liquid compared to treating a large volume of liquid with a smaller surface-to-volume ratio. The interactions between a radio frequency glow discharge sustained in He/H2O and a water droplet containing formate (HCOOaq) immersed in and flowing through the plasma were modeled using a zero-dimensional global plasma chemistry model to investigate these activation processes. HCOOaqinteracts with OHaq, which is produced from the solvation of OH from the gas phase. The resulting HCOOaqconcentrations were benchmarked with previously reported experimental measurements. The diameter of the droplet, initial HCOOaqconcentration, and gas flow rate affect only the HCOOaqconcentration and OHaqdensity, leaving the OH density in the gas phase unaffected. Power deposition and gas mixture (e.g. percentage of H2O) change both the gas and liquid phase chemistry. A general trend was observed: during the first portion of droplet exposure to the plasma, OHaqprimarily consumes HCOOaq. However, O2aq, a byproduct of HCOOaqconsumption, consumes OHaqonce O2aqreaches a critically large density. Using HCOOaqas a surrogate for OHaq-sensitive contaminants, combinations of residence time, droplet diameter, water vapor density, and power will determine the optimum remediation strategy. 
    more » « less
  9. Abstract Charging of particles having diameters of tens of microns has been extensively studied at atmospheric pressure in the context of, for example, electrostatic precipitators where the focus was on unipolar charging. The ambipolar charging of particles in atmospheric pressure plasmas, and of droplets in particular, has received less attention. The plasma activation of droplets is of interest for water purification, fertilizer production and materials synthesis, all of which depend on the transport of the droplets through the plasma, which in turn depends on their charging. In this paper, we report on the transport dynamics of water droplets, tens of microns in diameter, carried by the gas flow through an atmospheric pressure radiofrequency glow discharge sustained in helium. The droplets pass through the plasma with minimal evaporation and without reaching the Rayleigh limit. The droplet trajectory in the presence and absence of the plasma provides insights on the forces acting on the droplet. The measurements were analyzed using results from a three-dimensional fluid model and a two-dimensional plasma hydrodynamics model. We found that the transport dynamics as the droplet enters and leaves the plasma are due to differential charging of the droplet in the plasma gradients of the bounding sheaths to the plasma. 
    more » « less
  10. Abstract Atmospheric pressure plasmas intersecting with dielectric surfaces will often transition into surface ionization waves (SIWs). Several applications of these discharges are purposely configured to be SIWs. During propagation of an SIW over a dielectric surface, the plasma charges the surface while responding to changes in geometrical and electrical material properties. This is particularly important for non-planar surfaces where polarization of the dielectric results in local electric field enhancement. In this paper, we discuss results from computational investigations of negative and positive SIWs propagating over nonplanar dielectrics in three configurations—wavy surfaces, cuts through porous materials and water droplets on flat surfaces. We found that negative SIWs are particularly sensitive to the electric field enhancement that occurs at the crests of non-planar surfaces. The local increase in ionization rates by the electric field enhancement can result in the SIW detaching from the surface, which produces non-uniform plasma exposure of the surface. Positive SIWs tend to adhere to the surface to a greater degree. These trends indicate that treatment of pathogen containing droplets on surfaces may be best performed by positive SIWs. The same principles apply to the surfaces cut through pores. Buried pores with small openings to the SIW may be filled by plasma by either flow of plasma into the pore (large opening) or initiated by photoionization (small opening), depending on the size of the opening compared to the Debye length. 
    more » « less